Картирование генов возможно с помощью. Картирование генома человека

КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ

Факультет : биологии и биотехнологии

Кафедра : биотехнологии

«РЕФЕРАТ»

На тему: ГЕНЕТИЧЕСКОЕ СЦЕПЛЕНИЕ И КАРТИРОВАНИЕ ГЕНОВ ЧЕЛОВЕКА.

Выполнили : студенты 3-курса (мед.бт.)

Нуралибеков С.Ш.

Давронова М.А.

Проверила : к.б.н. ,доцент кафедры молекулярной

биологии и генетики Омирбекова Н.Ж.

АЛМАТЫ 2018

Генетические карты сцепления…………………………………………………………..3

Современные методы построения генетических карт сцепления……..........……...….5

ПЦР в исследованиях генома человека………………………………....………….……8

Физические карты низкого разрешения…………………………………………..….….9

Физические карты высокого разрешения……………..………………………..………11

Список использованных источников ………………...……………..………………….13

Картирование и определение первичной структуры генома человека

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров, стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить , что термин "сцепление" употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В след. таблице перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Современные методы построения генетических карт сцепления


Метод

Число картированных локусов

Гибридизация соматических клеток

1148

Гибридизация in situ

687

Семейный

466

Определение эффекта дозы

159

Рестрикционное картирование

176

Использование хромосомных аберраций

123

Использование синтении

110

Сегрегация генов, индуцированная облучением

18

Другие методы

143

Всего

3030

Гибридизация соматических клеток. Одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых – исследуемый. У межвидовых гибридов соматических клеток в процессе культивирования происходит утрата хромосом преимущественно одного из биологических видов. Потеря хромосом носит, как правило, случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Анализ клонов, содержащих разные наборы хромосом исследуемого вида, позволяет определить, с какой из этих оставшихся хромосом ассоциирована экспрессия исследуемого маркера, и, следовательно, локализовать ген на конкретной хромосоме.

Гибридизация in situ. Метод гибридизации in situ также широко используется для картирования последовательностей нуклеотидов на хромосомах. С этой целью препараты фиксированных хромосом гибридизуют (инкубируют при повышенной температуре с последующим охлаждением) с исследуемыми последовательностями нуклеотидов, меченными радиоактивной, флуоресцентной или иной меткой. После отмывания несвязавшейся метки оставшиеся меченые молекулы нуклеиновых кислот оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные исследуемым меченым последовательностям нуклеотидов. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после авторадиографии. Для этой группы методов характерна более высокая разрешающая способность, чем для гибридизации соматических клеток, поскольку они позволяют локализовать изучаемые последовательности нуклеотидов на хромосомах. По мере выполнения программы "Геном человека" в руках исследователей появляется все больше изолированных последовательностей нуклеотидов, которые можно использовать в качестве зондов для гибридизации in situ. В связи с этим данные методы по частоте использования в последнее время прочно выходят на первое место. Наиболее популярной оказывается группа методов, получивших название флуоресцентной гибридизации in situ (fluorescence in situ hybridization – FISH), при проведении которой используются полинуклеотидные зонды, содержащие флуоресцентную метку. В частности, в 1996 г. было опубликовано >600 работ, в которых описано использование этого метода.

Семейный генетический анализ сцепления. Эта группа методов часто используется в медицинской генетике для выявления связи (сцепления) между симптомами заболевания, вызываемого мутацией в неизвестном гене, и другими генетическими маркерами. В данном случае в качестве одного из генетических маркеров выступают сами симптомы заболевания. В геноме человека обнаружено большое количество полиморфизмов, в том числе ПДРФ. ПДРФ распределены более или менее равномерно в геноме человека на расстоянии 5–10 сМ друг от друга. Чем ближе индивидуальные полиморфные локусы расположены к гену , ответственному за заболевание, тем меньше вероятность их разделения при рекомбинации в мейозе и тем чаще они будут встречаться вместе у больного индивидуума и вместе передаваться от родителей потомству. Клонировав протяженный участок генома, включающий соответствующий полиморфный маркер (его отбор из клонотеки геномной ДНК проводят с помощью зонда), можно одновременно вместе с ним с большой вероятностью выделить ген, вызывающий наследственное заболевание. Такие подходы были, в частности, успешно применены для проведения семейного анализа и выделения соответствующих генов при мышечной дистрофии Дюшенна, кистозном фиброзе почек (муковисцидозе) и миотонической дистрофии. Информативность отдельных ПДРФ генома человека зависит от уровня их гетерозиготности в исследуемой популяции. Мерой информативности ПДРФ как генетического маркера по предложению Д. Ботштейна и соавторов (1980 г.) принято считать значение содержания полиморфной информации PIC (polymorphism information content), которое представляет собой отношение числа скрещиваний, в которых хотя бы у одного из родителей исследуемый полиморфный маркер находится в гетерозиготном состоянии, ко всем скрещиваниям.

Определение эффекта дозы гена и использование хромосомных аберраций . Этими методами обнаруживают корреляции между уровнем экспрессии исследуемого гена и количеством конкретных хромосом в анеуплоидных линиях клеток или структурными перестройками хромосом (хромосомными мутациями – аберрациями). Анеуплоидией называют наличие у клетки, ткани или целого организма числа хромосом, не равного типичному для данного биологического вида. Хромосомные аберрации в виде транслокаций участков хромосом в гетерохроматиновые области тех же самых или других хромосом часто сопровождаются подавлением транскрипции генов, расположенных в транслоцированных участках или в хромосоме-акцепторе (мозаичный эффект положения).

Использование синтении. Синтения – это структурное сходство групп сцепления генов у организмов разных биологических видов. В частности, в геномах человека и мыши известно несколько десятков синтеничных групп генов. Наличие феномена синтении позволяет суживать круг поиска места локализации исследуемого гена на хромосомах, ограничивая его областью известных генов, принадлежащих к конкретной синтеничной группе.

Сегрегация генов, индуцируемая ионизирующим излучением. С помощью этого метода определяют расстояние между исследуемыми генами путем оценки вероятности их разделения (сегрегации) после облучения клеток определенной стандартной дозой ионизирующего излучения. Облученные клетки спасают от гибели гибридизацией с соматическими клетками грызунов, и у соматических гибридов в культуре определяют наличие исследуемых маркеров облученных клеток. В итоге удается сделать вывод о наличии или отсутствии сцепления (физическом расстоянии) между этими генами.

Среди других методов следует упомянуть способы, основанные на использовании для картирования генов больших фрагментов ДНК, образуемых под действием крупнощепящих рестриктаз. После расщепления геномной ДНК образующиеся фрагменты разделяют электрофорезом в импульсном электрическом поле и далее их гибридизуют по Саузерну с зондами, соответствующими картируемым генам. Если после проведения гибридизации сигналы обоих зондов локализуются на одном и том же крупном фрагменте ДНК, это говорит о тесном сцеплении таких генов.

ПЦР в исследованиях генома человека

Полимеразная цепная реакция занимает центральное место в разработке подходов к практическому осуществлению программы "Геном человека". Как уже обсуждалось выше, с помощью ПЦР можно быстро и эффективно амплифицировать почти любой короткий участок генома человека, и полученные продукты ПЦР далее использовать в качестве зондов для картирования соответствующих участков на хромосомах путем гибридизации по Саузерну или in situ.

Концепция STS. Одной из ключевых концепций , лежащих в основе картирования генов человека в рамках обсуждаемой программы, является концепция сайтов, привязанных к последовательностям (sequence-tagged sites – STS). В соответствии с этой концепцией все фрагменты ДНК, используемые для построения генетических или физических карт, можно однозначно идентифицировать с помощью последовательности нуклеотидов длиной в 200–500 п.о., которая будет уникальной для данного фрагмента. Каждый из этих сайтов необходимо секвенировать, что даст возможность в дальнейшем их амплифицировать с помощью ПЦР и применять в качестве зондов. Использование STS позволило бы применять их последовательности в виде продуктов ПЦР в качестве зондов для направленного выделения любого фрагмента ДНК того или иного участка генома из клонотек геномных последовательностей. В результате могут быть созданы базы данных, включающие локализацию и структуру всех STS, а также праймеров, необходимых для их амплификации. Это избавило бы лаборатории от необходимости хранения многочисленных клонов и их рассылки в другие лаборатории для проведения исследований. Кроме того, STS создают основу для разработки единого языка, на котором разные лаборатории могли бы описывать свои клоны. Таким образом, конечным результатом разработки концепции STS была бы исчерпывающая карта STS генома человека. Теоретически для построения генетической карты размером в 1 сМ необходимо 3000 полностью информативных, полиморфных ДНК-маркеров. Однако поскольку полиморфные маркеры распределены в геноме неравномерно и лишь немногие из них полностью информативны, реальное число маркеров, требуемых для построения карты такого размера, оценивается в 30–50 тысяч. Для получения маркеров, соответствующих исследуемым участкам хромосом, в настоящее время часто применяют праймеры, соответствующие диспергированным повторяющимся последовательностям, среди которых первыми стали использовать Alu-последовательности.

Alu-ПЦР. Диспергированные повторяющиеся Alu-последовательности характерны именно для генома человека. Праймеры, специфичные в отношении Alu-последовательностей, используют для амплификации участков ДНК генома человека, заключенных между Alu-повторами, которые располагаются в среднем на расстоянии 4–10 т.п.о. друг от друга. Другим вариантом Alu-ПЦР является направленный синтез с ее помощью ДНК-зондов к участкам хромосом, полученным после лазерной фрагментации, индивидуальным хромосомам, выделенным с помощью проточной цитофлуориметрии, или ДНК гибридных клеток, содержащих определенную часть генома человека. Кроме того, Alu-ПЦР используют для получения уникальных фингерпринтов , характеризующих клеточные гибриды с точки зрения стабильности их генома, а также для характеристики фрагментов ДНК человека, клонированных в YAC-векторах, космидах или векторах на основе ДНК бактериофагов. Уникальность Alu-последовательностей для генома человека делает возможным их применение для "прогулок по хромосомам" , а также для расширения существующих контигов. Поскольку в геноме человека >90% умеренно повторяющихся последовательностей представлены семействами Alu и KpnI, неудивительно, что последние также применяются в ПЦР для тех же целей, что и Alu. Однако здесь профили продуктов ПЦР менее сложны, поскольку последовательности KpnI повторяются в геноме реже и обладают характерной локализацией в хромосомах.

ПЦР активно используется для выявления полиморфных молекулярных маркеров при построении генетических карт сцепления, основные принципы получения которых были рассмотрены выше. Этот метод оказывается полезным и при секвенировании ДНК, а также при построении физических карт высокого разрешения для генома человека. О последних двух сферах применения ПЦР подробнее речь пойдет ниже.

Физические карты низкого разрешения

В отличие от рассмотренных выше генетических карт сцепления физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах оснований. Физические карты различаются по степени их разрешения, т.е. по тем деталям структуры генома, которые на них представлены. Исчерпывающая физическая карта генома человека максимального разрешения будет содержать полную нуклеотидную последовательность всех его хромосом. На другом полюсе физических карт с минимальным разрешением находятся хромосомные (цитогенетические) карты генома.

Четыре типа генетических карт геномной ДНК и их взаимоотношения

1 – генетическая карта сцепления, 2 – физическая рестрикционная карта, пробелы обозначают места расщепления ДНК рестриктазами, 3 – физическая карта контигов, показаны перекрывающиеся клоны ДНК, полученные с помощью YAC-векторов, 4 – исчерпывающая физическая карта в виде последовательности нуклеотидов ДНК. На всех картах представлен один и тот же участок хромосомы

Хромосомные карты. Хромосомные карты генома человека получают локализацией генетических маркеров на индивидуальных хромосомах с использованием цитогенетических методов, включая авторадиографию и FISH. В последних двух случаях радиоактивная или флуоресцентная метки, ассоциированные с исследуемыми генетическими локусами интактных хромосом, выявляются с помощью световой микроскопии. Еще совсем недавно хромосомные карты позволяли локализовать исследуемый фрагмент ДНК на участке хромосомы протяженностью 10 м.п.о. Современные методы гибридизации in situ с использованием метафазных хромосом , главным образом, метод FISH, локализуют полинуклеотидные маркеры в пределах 2–5 м.п.о. Более того, при гибридизации in situ с интерфазными хромосомами, в которых генетический материал находится в менее компактной форме, разрешающая способность хромосомных карт приближается к 100 т.п.о.

Точность хромосомных карт повышается и с использованием современных генетических методов. Например, способность ПЦР амплифицировать сегменты ДНК единичного сперматозоида позволяет исследовать большое число мейозов, как бы законсервированных в отдельных образцах спермы. В результате появляется возможность проверки взаимного расположения генетических маркеров, локализованных на хромосомных картах более грубыми методами.

Карты кДНК . Карты кДНК отражают положение экспрессирующихся участков ДНК (экзонов) относительно известных цитогенетических маркеров (бэндов) на метафазных хромосомах. Поскольку такие карты дают представление о локализации транскрибирующихся участков генома, в том числе и генов с неизвестными функциями, они могут быть использованы для поиска новых генов. Этот подход особенно полезен при поиске генов, повреждения которых вызывают заболевания человека, в том случае если приблизительная локализация таких участков хромосом уже предварительно проведена на генетических картах сцепления в результате семейного генетического анализа.

Физические карты высокого разрешения

Две стратегии построения физических карт ДНК

а – стратегия "сверху вниз": ДНК целой хромосомы расщепляется крупнощепящими рестриктазами, для каждого из индивидуальных фрагментов ДНК строится рестрикционная карта; б – стратегия "снизу вверх", индивидуальные YAC-клоны после идентификации объединяются в контиги

В попытках построения карт генома человека высокого разрешения экспериментально реализуются два альтернативных подхода, получивших названия картирования сверху вниз (top-down mapping) и картирования снизу вверх (bottom-up mapping). При картировании сверху вниз исходным в анализе является препарат ДНК индивидуальной хромосомы человека. ДНК разрезается крупнощепящими рестриктазами (например NotI) на длинные фрагменты, которые после разделения электрофорезом в импульсном электрическом поле подвергаются дальнейшему рестрикционному анализу с другими рестриктазами. В результате получают макрорестрикционную карту, на которой достаточно полно представлены все последовательности исследуемой хромосомы или ее части, однако ее разрешение невысоко. На такой карте очень трудно локализовать индивидуальные гены. К тому же каждая индивидуальная карта редко охватывает протяженные сегменты ДНК (как правило, не более 1–10 м.п.о.).

При картировании генома человека снизу вверх на основе препарата суммарной ДНК генома или индивидуальной хромосомы получают серию случайных клонов протяженных последовательностей ДНК (10–1000 т.п.о), часть из которых перекрывается друг с другом. В качестве вектора для клонирования в этом случае часто используют искусственные минихромосомы бактерий (BAC) или дрожжей (YAC), подробно описанные в разделе 7.2.4. Серия частично перекрывающихся и дополняющих друг друга клонов образует непрерывную состыкованную (contiguous) последовательность нуклеотидов ДНК, получившую название контига (contig). Правильность полученных контигов подтверждают гибридизацией in situ (FISH) с одновременной их привязкой к определенным участкам исследуемых хромосом. Карты, основанные на контигах, представляют полную информацию о структуре отдельных сегментов хромосом и позволяют локализовать отдельные гены. Однако такие карты трудно применять для реконструкции целых хромосом или протяженных их участков из-за отсутствия соответствующих клонов в имеющихся клонотеках генов.

Основная проблема, которую приходится решать при использовании обоих подходов к построению физических карт высокого разрешения, – объединение разрозненных фрагментов ДНК в непрерывные последовательности нуклеотидов. Чаще всего для этого применяют специальные клонированные фрагменты ДНК, получившие название связующих (linking) клонов. Фрагменты ДНК из связующих клонов содержат в своих внутренних частях последовательности нуклеотидов крупнощепящих рестриктаз и, следовательно, представляют собой места стыковки фрагментов ДНК , используемых на первых этапах физического картирования. Гибридизацией по Саузерну, при проведении которой в качестве зондов используют фрагменты ДНК связующих клонов, определяют фрагменты ДНК физических карт, содержащие последовательности нуклеотидов окрестностей сайтов рестрикции крупнощепящих рестриктаз. Если два таких фрагмента найдены, то соответствующий связующий клон перекрывает оба этих фрагмента и является их частью. Связующие клоны, в свою очередь, отбирают из клонотек генов с помощью зондов, которые представляют собой последовательности нуклеотидов сайтов рестрикции крупнощепящих рестриктаз.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1) Clark M.S. Comparative genomics: The key to understanding the Human Genome Project // BioEssays. 1999. Vol. 21. P. 21–30.

2) Billings P.R., Smith C.L., Cantor C.L. New techniques for physical mapping of the human genome // FASEB J. 1991. Vol. 5. P. 28–34.

3) Георгиев Г.П. Гены высших организмов и их экспрессия. М.: Наука, 1989. 254 с.

4) http://referatwork.ru/refs/source/ref-8543.html

Генетические карты сцепления. Генетические карты сцепления определяют хромосомную принадлежность и взаимное расположение генетических маркеров относительно друг друга. Картирование в узком смысле -- определение положения гена или мутации в хромосоме. Позднее этот термин получил более широкое толкование. Он относится не только к гену, но к любому маркеру, под которым подразумевают ген, мутацию, участок ДНК с неопределенной функцией, точку расщепления ДНК рестриктазами. Таким образом, маркер -- это любой наследуемый признак, доступный идентификации тем или иным способом. Установление локализации какого-либо маркера позволяет использовать его для определения положения другого маркера.

На практике именно генетические карты сцепления и только они позволяют локализовать сложные генетические маркеры (например, ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения.

До начала 70-х годов XX в. построение генетических карт человека продвигалось очень медленными темпами. Первый ген человека (ген цветной слепоты) был картирован на Х-хромосоме в 1911 г., а первый аутосомный ген -- только в 1968 г. К 1973 г. на хромосомах человека было картировано 64 гена, а к 1994 г. -- 5000 структурных генов и свыше 60 000 маркерных ДНК-последовательностей. Столь стремительный прогресс в картировании генов человека связан с появлением новых технологий в цитогенети-ке, в клеточных культурах и особенно в молекулярной генетике.

Гибридизация соматических клеток. Одним из наиболее популярных методов отнесения генетического маркера (функционально активного гена) к конкретной группе сцепления является гибридизация (слияние друг с другом) соматических клеток разных биологических видов организмов, один из которых -- исследуемый. Гибридные клоны получают путем искусственного слияния клеток человека и различных грызунов: китайского хомячка, мыши, крысы. Культивирование таких соматических гибридов, как оказалось, сопровождается утратой хромосом человека. Потеря хромосом носит случайный характер, и образующиеся клоны клеток содержат оставшиеся хромосомы в разных сочетаниях. Так получают панели гибридных клеточных клонов, содержащих всего одну или несколько хромосом человека и полный набор хромосом другого вида. Обнаружение человеческих белков, специфических мРНК или последовательностей ДНК в таких клонах позволяет однозначно определить хромосомную принадлежность соответствующих генов.

Гибридизация in situ (в том же месте). Этот метод дает возможность локализовать определенные последовательности нуклеотидов на хромосомах. Они выступают в качестве зондов. Препараты фиксированных хромосом гибридизуют с исследуемыми последовательностями, меченными радиоактивной или флуоресцентной меткой. Меченые молекулы оказываются ассоциированными с участками хромосом, содержащими последовательности, комплементарные меченому зонду. Полученные гибриды анализируют с помощью микроскопа либо непосредственно, либо после радиоавтографии. Этот метод по частоте использования в последнее время прочно выходит на первое место. Наиболее популярной оказалась группа методов, получивших название флуоресцентной гибридизации in situ -- метод FISH (от англ. Fluorescence in situ hybridization ).

Полимеразная цепная реакция (ПЦР) позволила быстро и эффективно амплифицировать почти любой участок генома человека, а полученные продукты ПЦР использовать в качестве зондов для картирования соответствующих участков на хромосомах путем гибридизации in situ . В этом плане успешно разработана концепция сайтов, привязанных к последовательностям, --STS (от англ. Sequence-tagged sites). Все фрагменты ДНК, которые используются для построения генетических и физических карт, можно однозначно идентифицировать с помощью последовательности нуклеотидов длиной в 200 -- 500 н.п., которая является уникальной для данного фрагмента. Эти сайты амплифицируют с помощью ПЦР и применяют в качестве зондов. STS позволили создать основу для разработки единого языка, дающего возможность разным лабораториям описать свои клоны. Конечным результатом разработки концепции STS является создание исчерпывающей карты STS генома человека. Для получения маркеров в настоящее время часто применяют праймеры, соответствующие диспергированным повторяющимся последовательностям, среди которых первыми стали использовать А1u-последовательности, так как они характерны именно для генома человека. Поскольку в геноме человека больше 90 % умеренно повторяющихся последовательностей представлены семействами А1u и Крn I (последние повторяются реже и обладают характерной локализацией в хромосомах), они и используются для получения соответствующих зондов в ПЦР-реакции.

Физические карты низкого разрешения. Физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах нуклеотидов. Физическую карту низкого разрешения часто называют хромосомной (цитогенетической) картой генома.

В начале 70-х годов XX в. появилась реальная возможность точной идентификации не только всех хромосом в кариотипе человека, но и их отдельных сегментов. Это связано с появлением мето да дифференциального окрашивания препаратов метафазных хромосом. Хромосомные препараты окрашивают некоторыми флуорохромами после соответствующей протеолитической обработки или нагревания. При этом на хромосомах выявляется характерная поперечная исчерченность -- так называемые диски (бэнды), расположение которых специфично для каждой хромосомы. Величина небольших дисков на прометафазных хромосомах соответствует примерно 1 млн н.п. на физических картах. Каждая хромосома после дифференциальной окраски может быть разделена на сегменты, нумерация которых начинается от центромерного района вверх (короткое плечо р) либо вниз (длинное плечо -- q) . Полосы в каждом сегменте также пронумерованы в аналогичном порядке. Запись положения гена на карте включает номер хромосомы, плечо, номер сегмента, бэнда и его субъединицы.

Запись 7 q21.1 означает, что ген локализован в субъединице 1-го бэнда 2-го сегмента длинного плеча хромосомы 7. Подобная запись удобна для цитогенетического картирования метода гибридизации in situ, позволяющего локализовать ген с точностью до одного бэнда и даже его субъединицы.

Хромосомные карты генома человека получают также локализацией генетических маркеров, чаще всего методом FISН: для метафазных хромосом разрешающая способность хромосомных карт находится в пределах 2 -- 5 млн н.п.; для интерфазных хромосом (генетический материал находится в менее компактной форме) -- приближается к 100 тыс. н.п. Для этого уровня картирования характерны карты кДНК (с. 358). Они отражают положение экспрес-сирующихся участков ДНК (экзонов) относительно известных ци-тогенетических маркеров (бэндов) на метафазных хромосомах. Поскольку такие карты дают представление о локализации транскрибирующихся участков генома, в том числе и генов с неизвестными функциями, они могут быть использованы для поиска новых генов. Этот подход полезен при поиске генов, повреждение которых вызывает заболевания человека, в том случае, если приблизительная локализация таких участков хромосом уже проведена на генетических картах сцепления (см. рис. 100).

Физические карты высокого разрешения. Для построения физических карт высокого разрешения экспериментально реализуется два альтернативных подхода: картирование сверху вниз и картирование снизу вверх (рис.В к геному) . Для картирования сверху вниз препарат ДНК индивидуальной хромосомы человека разрезают крупнощепящими рестриктазами (например, Not I) на длинные фрагменты, которые после разделения методом электрофореза в пульсирующем поле подвергаются дальнейшей обработке другими рестриктазами.

Методом электрофореза под действием однонаправленного постоянного поля в агарозном или полиакриламидном гелях удается разделить фрагменты ДНК размером не более 30 --50 тыс. н.п. Продвижение больших фрагментов ДНК в геле при пульсирующем изменении направления электрического поля происходит за счет конформационных изменений, обусловленных скручиванием и раскручиванием молекул ДНК в момент переключения направления поля. В этом случае удается разделить молекулы ДНК размером от 50 тыс. н.п. до 10 млн н.п.).

В результате получают макрорестрикционную карту. Метод электрофореза был с успехом использован для картирования малых геномов.

Для картирования генома человека снизу вверх на основе препарата суммарной ДНК генома или индивидуальной хромосомы получают серию случайных клонов протяженных последовательностей ДНК (10-- 1000 тыс. н.п.), часть из которых перекрывается друг с другом. В качестве вектора для клонирования в этом случае используют искусственные минихромосомы дрожжей (УАС). Последовательный набор клонов, содержащих частично перекрывающиеся и дополняющие друг друга фрагменты ДНК из определенного района генома, получил название скользящего зондирования, или «прогулки по хромосоме». Каждый раз отобранный фрагмент используется в качестве ДНК-зонда для последующего поиска. В результате получают набор клонированных фрагментов ДНК, полностью перекрывающих исследуемый участок генома, получивший название «контиг». Эта стратегия впервые была успешно применена для изучения 3-й хромосомы дрозофилы. С ее помощью редко удается пройти более 200 -- 300 тыс. н.п. в одном направлении из-за наличия в геноме повторяющихся и трудно клонируемых последовательностей ДНК. Для преодоления таких ограничений и ускорения процесса поиска генных последовательностей Ф. Коллинз, ныне президент Международного консорциума, предложил метод «прыжков» по хромосоме, позволяющий изолировать фрагменты ДНК, отстоящие в геноме друг от друга на сотни тысяч пар нуклеотидов (длина прыжка), не выделяя при этом все промежуточные последовательности ДНК.

Правильность полученных контигов подтверждают обычно гибридизацией in situ (FISH) с одновременной привязкой к определенным участкам исследуемых хромосом.


Важнейшей задачей молекулярной генетики применительно к медицине является идентификация генов наследственных заболеваний человека и выявление конкретных повреждений в них, приводящих к развитию фенотипических проявлений болезни. Эта задача может пить выполнена с помощью нескольких основных под-
\ОДОВ.
Первый подход к идентификации генов, остававшийся ведущим приблизительно до начала 90-х годов,
| чзируется на имеющейся информации об основном био- х11 мическом дефекте (первичном белковом продукте гена), ха- рактеризующем изучаемую болезнь | Шишкин С.С., Калинин В.Н., ] 992; Gardner Е. et al., 1991; Collins F., 1995].
I l"-реход от белкового анализа на уровень ДНК осуществлялся через секвенирование очищенного белкового продукта и получение ДНК-зондов, использование моноклональных антител и с помощью некоторых других методических приемов. Хромосомная локализация гена в данной схеме поиска является конечным результатом исследования. Описанный подход, использующий ту или иную предварительную информацию о функциональном значении искомого гена, получил название «функциональное клонирование» . Примером успешного применения функционального клонирования является идентификация гена фенилкетонурии. К сожалению, данный метод может быть применен лишь к весьма ограниченному кругу заболеваний человека, тогда как для большинства наследственных болезней первичные продукты гена или патогномоничные биохимические маркеры неизвестны.
Совершенствование молекулярных технологий привело к созданию принципиально иной стратегии поиска гена, не требующей каких-либо предварительных знаний о его функции или первичном биохимическом продукте. Данная стратегия предполагает идентификацию гена на основании точного знания его локализации в определенном хромосомном локусе - «позиционное клонирование» (менее удачный термин «обратная генетика») . Позиционное клонирование ведет к установлению молекулярной основы болезни «от гена к белку» и включает следующие основные этапы: 1) картирование гена болезни в определенном участке конкретной хромосомы (генетическое картирование); 2) составление физической карты изучаемой хромосомной области (физическое картирование); 3) идентификация экспрессирующихся последовательностей ДНК в изучаемой области; 4) секвенирование генов-кандидатов и выявление мутаций в искомом гене у больных лиц; 5) анализ структуры гена.
расшифровка последовательности и первичной структуры его продуктов - мРНК и белка . В ряде случаев позиционное клонирование гена облегчается при обнаружении у больных видимых ци го- генетических перестроек или определяемых делеций в критической хромосомной области, позволяющих значительно повысить точность картирования мутантного гена. Выявление таких перестроек способствовало, в частности, успеху в клонировании генов миодистрофии Дюшепна/Бекера, нейрофиброматоза 1-го типа, туберозного склероза, адренолейкодистрофии и других наследственных заболеваний нервной системы.
Одним из важных промежуточных результатов исследовательского прост а «Геном человека» стало со- здапие все более и более насыщенной транскрипционной карты генома, содержащей сведения о тысячах уже известных генов и экспрессирующихся нуклеотидных последовательностей. Это способствовало значительному развитию еще одного подхода к идентификации первичного генетического дефекта, при котором после предварительного картирования мутантного гена проводится скрининг подходящих генов-кандидатов, расположенных в том же хромосомном участке (lt;lt;positional candidate approach») . Данный метод предполагает наличие определенных знаний о патофизиологии изучаемого заболевания, что дает возможность проводить рациональный отбор гепов-кандидатов для анализа из большого числа генов, которые могут быть расположены в «зоне интереса». Среди неврологических наследственных заболеваний, гены которых были идентифицированы таким образом благодаря анализу подходящих кандидатов в установленном хромосомном интервале, можно назвать дофа-зависимую дистонию и фридрейхо- подобную атаксию с дефицитом витамина Е. По существующим прогнозам, именно анализ «позиционных кандидатов» станет в ближайшем будущем ведущим методом идентификации генов наследственных болезней, чему в немалой степени способствует создание и постоянное расширение компьютерных баз данных экспрессирующихся последовательностей на хромосомах («expressed sequence tags») .
Таким образом, определение хромосомной локализации искомого гена - генетическое картирование - является первым, ключевым шагом на пути к раскрытию молекулярной основы того или иного наследственного заболевания.
Существует несколько основных методов, позволяющих картировать неизвестный ген в конкретном хромосомном локусе: а) клинико-генеалогический (простейший и наиболее давний) - основан на анализе наследования признаков в больших родословных; примером может служить установление локализации гена на Х-хро- мосоме в случае передачи болезни по Х-сцепленному типу; б) цитогенетический - базируется на ассоциации выявляемых при микроскопии хромосомных перестроек с определенным клиническим фенотипом; в) метод гибридизации in situ (в том числе его современная модификация - флюоресцентная гибридизация in situ, FISH) - использует специфическую гибридизацию мРНК и кДНК искомого гена с денатурированными хромосомами на метафазных препаратах клетки; г) метод гибрид ных клеток - основан на анализе совместной сегрегации клеточных признаков и хромосом в клонированных in vitro гибридных соматических клетках [Фогель Ф., Мотульски А., 1990; Gardner Е. et al., 1991]. Все эти методы нашли свое применение в современной молекулярной генетике, однако они обладают серьезными ограничениями, связан ными как с недостаточной разрешающей способностью, так и с существованием жестких предусловий, необходимых для проведения исследования (таких как наличие зондов, доступность селективных систем для отбора гибридных клеток и т.п.). Наиболее мощным, продуктивным и широко используемым в настоящее время методом картирования генов наследственных болезней человека является так называемый linkage-анализ - анализ сцепления искомого гена с набором точно локализованных генетических маркеров .
Центральное положение linkage-анализа заключается в том, что мерой относительного генетического расстояния между двумя локусами па хромосоме может служить частота рекомбинаций между этими локусами в результате кроссинговера гомологичных хромосом в мейозе. Чем ближе расположены локусы па хромосоме, I ем больше вероятность того, что они будут наследоваться как единое целое (группа сцепления); при значительной удаленности изучаемых локусов (т.е. слабой степени сцепления) они с большей вероятностью разойдутся после кроссинговера по разным хромосомам. Частота рекомбинации между локусами 1% принята за единицу

  1. енетического расстояния между ними - 1 сантиморга- ниду (сМ), что эквивалентно в среднем 1 миллиону п.о. Следует подчеркнуть, что частота рекомбинаций и, следовательно, генетическое расстояние, неодинаковы для мужчин и женщин (больше у женщин), для разных хромосом, а также для разных участков одной хромосомы («горячие точки» рекомбинации) .
Сущность анализа сцепления состой! в сопоставлении наследования патологического признака (болез-

Рис. 30. Принцип анализа генетического сцепления на примере аутосомно-доминантного заболевания В данном примере исследованы 4 сцепленных маркера А, В, С и D, по которым реконструированы гаплотипы. Разные по происхождению хромосомы маркированы различными типами штриховки (исходная мутантная хромосома обозначена черным цветом). Все больные в родословной имеют одну и ту же общую (среднюю) часть исходной мутантной хромосомы. Например, в нижнем поколении хромосомы претерпели ряд рекомбинаций, однако у всех больных сибсов (в том числе у лиц Ш-З и Ш-8) сохраняется один и тот же мутантный гаплотип по маркерам В и С (гаплотип у). Напротив, никто из здоровых сибсов в нижнем поколении не унаследовал от отца гаплотип j по маркерам В и С (индивидуум Ш-4 унаследовал хромосому, в которой рекомбинация произошла ниже критического сегмента). Таким образом, сегрегация маркерных аллелей и анализ гаплотипов свидетельствуют о том, что ген заболевания расположен в хромосомном сегменте, включающем в себя маркеры В и С. Соответственно, внешними границами участка хромосомы, в пределах которого расположен мутантный ген, являются маркеры А и D.
и тот же аллель исследуемого маркера, это свидетельствует об отсутствии рекомбинаций между искомым мутантным геном и данным маркером, т.е. о наличии сцепления между ними. Пример сцепления между геном аутосомно-доминантного заболевания и определенными генетическими маркерами представлен на рис. 30.
Для достоверного доказательства сцепления разработан специальный математический аппарат . Принцип расчета заключается в сопоставлении вероятностей гипотез о наличии и отсутствии сцепления при имеющихся семейных данных и выбранной частоте рекомбинаций 0; соотношение этих двух вероятностей (соотношение правдоподобий) выражает шансы за и против сцепления. Для удобства используется десятичный логарифм соотношения правдоподобий - Лод- балл (от англ. Logarithm of the Odds, или LOD):
Po
LOD = Logio --
P1/2 , где P - вероятность
полученного распределения семейных данных для сцепленных генов с частотой рекомбинаций 0, Р - вероятность такого распределения для двух несцепленных свободно рекомбинирующих генов (частота рекомбинаций 0 = 1/2). Использование логарифмической формы расчета позволяет проводить сложение 27од-баллов, полученных при анализе отдельных родословных. Для доказательства генетического сцепления принято значение Лод- балла +3, которое означает соотношение шансов 1000:1 в пользу наличия генетического сцепления междgt; маркером и изучаемым признаком. Лод-балл -2 и ниже свидетельствует о достоверном отсутствии сцепления; значения Лод-балла от +3 до - 2 являются, соответственно, более или менее предположительными с точки зрения наличия сцепления и нуждаются в дальнейшем подтверждении. Частота рекомбинаций 0, для которой был выявлен максимальный Л од-балл, является отражением наиболее вероятного генетического расстояния между изучаемыми локусами; ориентировочно считается, что 1% рекомбинаций свидетельствует об очень тесном сцеплении, частота рекомбинаций около 5% - о хорошем сцеплении и частота 10-20% - о некотором умеренном сцеплении.
Расчет Лоб-баллов предполагает использование специального компьютерного программного обеспечения (программа LIPED, пакет программ LINKAGE и др.) .
Для успеха linkage-анализа необходимо, чтобы исследуемые семьи были информативны по болезни и по генетическому маркеру. Первое означает наличие достаточного числа информативных мейозов в родословной, позволяющих анализировать расхождение признаков в данной родословной. С практической точки зрения это означает наличие большого числа доступных для анализа больных и здоровых родственников, как правило, из нескольких поколений. Информативность по маркеру предполагает его полиморфизм (т.е. существование большого числа аллелей) и гетерозиготность у ключевых членов семьи, что позволяет дифференцировать генетическое происхождение конкретных аллелей маркера. До конца 80-х годов основным типом маркеров, используемых в анализе сцепления, были участки ДНК хромосом, имеющие в своем составе вариацию в одной паре оснований и различаемые по наличию или отсутствию участка рестрикции для соответствующего фермента, т.е. по длине рестрикционных фрагментов («restriction fragment length polymorphism», RFLP) . Новая эра в генетическом картировании наступила с открытием класса высокополиморфных маркеров, представляющих собой участки ДНК, состоящие из вариабельного числа копий тандемных (СА)п-повторов и обладающие чрезвычайно высокой гетерозиготностью . Это позволило в значительной степени разрешить проблему информативности используемых маркеров и способствовало существенному прогрессу linkage-анализа. По некоторым оценкам, для скрининга полного гаплоидного генома и выявления генетического сцепления необходимо иметь 200-300 высокополиморфных маркеров, равномерно распределенных по хромосомам . Генетические карты последнего поколения включают свыше 5000 таких маркеров , что позволяет считать сегодня задачу установления генетического сцепления принципиально возможной в любых информативных родословных .
Серьезных проблемой, с которой приходится сталкиваться при проведении анализа сцепления на серии семей, является проблема возможной генетической гетерогенности изучаемого клинического синдрома. В случае, если изучаемый фенотип может вызываться мутациями в разных генах, механическое сложение полученных в отдельных семьях положительных (при наличии сцепления) и отрицательных (при его отсутствии) Лод- баллов ведет к нивелированию суммарного значения Лод- балла и ложному выводу о полном отсутствии сцепления. Примером может служить аутосомно-доминантная моторно-сенсорная невропатия 1 типа, обусловленная мутациями в разных генах, локализованных на 1-й, 17-й и других хромосомах . В этой ситуации особое значение приобретает тщательное, детальное обследование больных и семей, направляемых для linkage-анализа, с целью отбора максимально однородных клинических групп. Дополнитеёгьным способом избежать ложно-отрицательного результата исследования является использование в процессе расче

та,/7од-баллов специальной программы HOMOG или аналогичных ей программ, позволяющих оценивать вероятность генетической гетерогенности при полученном конкретном наборе семейных данных . Наиболее действенным подходом на первом этапе исследования является анализ сцепления в одной большой информативной родословной, что позволяет заведомо иск почить возможность генетической гетерогенности в изучаемой группе больных. Дополнительные сложности при проведении linkage-анализа связаны с нередко наблюдающейся неполной пенетрант- ностью и вариабельной экспрессивностью мутантного гена, наличием фенокопий среди обследуемых членов семьи, оценкой возраста начала болезни и возможности доклинического носительства мутации, оценкой распространенности конкретных аллелей изучаемых маркеров в популяции и т.д. . Неверный учет или недооценка этих факторов могут существенно повлиять на итоговый результат, поэтому качество подробного клинико-генеалогического анализа в изучаемых семьях выступает на первый план.
Разработано много новых методов, представляющих из себя дальнейшее развитие традиционной стратегии исследования генетического сцепления и существенно повышающих скорость выполнения, методические возможности и разрешающую способность данного анализа в локализации неизвестных генов наследственных заболеваний человека. Одним из таких методов является мультилокусный анализ (multipoint linkage analysis), позволяющий оценивать Лод-баллы для совокупности сцепленных локусов в соответствии с генетической картой изучаемого хромосомного участка и определять наиболее вероятную локализацию мутантного гена в пределах данного участка . В инбредных

родословных с аутосомно-рецессивным заболеванием при наличии предположения об «эффекте основателя» исключительно продуктивным зарекомендовал себя метод гомозиготного картирования: он заключается в анализе «го- мозиготности по происхождению» {«homozygosUy-by- descent») и позволяет оценить степень гомозиготлости больных лиц по серии маркеров как результат наследования от единого предка общего хромосомного участка, включающего мутантный ген . Многообещающим является метод «экономного сканирования генома», предполагающий преимущественное использование маркеров, локализованных в «стратегических» CG насыщенных хромосомных областях, богатых экспрессирующимися последовательностями . Предложен также целый ряд других модификаций классического linkage-анализа .
Важно подчеркнуть, что анализ сцепления сохранит свое значение и после идентификации всего генома человека . Например, при изучении все еще достаточно большой группы наследственных заболеваний с неустановленными генами первым шагом на пути к выяснению молекулярного дефекта может служить /ш/ш^е-апализ и определение хромосомного локуса болезни, с последующим скринингом подходящих генов в данной области. Чрезвычайно важной в успехе генетического картирования является роль клинициста. Она заключается в адекватном отборе репрезентативных семей, детальной оценке клинического статуса всех включенных в исследование членов семьи, точной диагностике болезни и оценке характера сегрегации мутантного гена, а также в решении многих других ключевых вопросов.

После краткого рассмотрения основных методов, наиболее часто используемых в молекулярной генетике для исследования структуры и механизмов функционирования генов, представляется целесообразным на примере генома человека подробнее познакомиться с практическим применением этих методов и их модификаций для изучения больших геномов. В целях всестороннего исследования генома человека, этого колоссального по объему хранилища его генетической информации, недавно была разработана и воплощается в жизнь специальная международная программа "Геном человека" ("Human Genome Project"). Основной задачей программы является построение исчерпывающих генетических карт большого разрешения каждой из 24 хромосом человека, которое, в конечном счете, должно завершиться определением полной первичной структуры ДНК этих хромосом. В настоящее время работы по проекту идут полным ходом. В случае успешного его завершения (а это по планам должно произойти в 2003 г.) у человечества появятся перспективы досконального изучения функциональной значимости и механизмов функционирования каждого из его генов, а также генетических механизмов, управляющих биологией человека, и установления причин большинства патологических состояний его организма.

    1. Основные подходы к картированию генома человека

Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшего размера, позволяющего их дальнейший анализ известными методами. Вторая стадия исследований предполагает определение взаимного расположения этих индивидуальных фрагментов ДНК друг относительно друга и их локализации в самих хромосомах. На завершающем этапе необходимо произвести собственно определение первичной структуры ДНК каждого из охарактеризованных фрагментов хромосом и составить полную непрерывную последовательность их нуклеотидов. Решение задачи не будет полным, если в найденных последовательностях нуклеотидов не удастся локализовать все гены организма и определить их функциональное значение. Прохождение трех вышеперечисленных этапов требуется не только для получения исчерпывающих характеристик генома человека, но и любого другого генома большого размера.

      1. Генетические карты сцепления

Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые наследуемые фенотипические признаки, различающиеся у отдельных особей. Фенотипические признаки, отвечающие требованиям генетических маркеров, весьма разнообразны. Они включают в себя как особенности поведения или предрасположенность к определенным заболеваниям, так и морфологические признаки целых организмов или их макромолекул, различающихся по структуре. С развитием простых и эффективных методов исследования биологических макромолекул такие признаки, известные под названием молекулярных маркеров , стали наиболее часто использоваться при построении генетических карт сцепления. Прежде чем перейти к рассмотрению методов построения таких карт и их значения для исследования генома, необходимо напомнить, что термин "сцепление " употребляется в генетике для обозначения вероятности совместной передачи двух признаков от одного из родителей потомству.

При образовании половых клеток (гамет) у животных и растений на стадии мейоза, как правило, происходит синапсис (конъюгация) гомологичных хромосом. Сестринские хроматиды гомологичных хромосом соединяются по всей длине друг с другом, и в результате кроссинговера (генетической рекомбинации между хроматидами) происходит обмен их частями. Чем дальше два генетических маркера располагаются друг от друга на хроматиде, тем больше вероятность того, что разрыв хроматиды, необходимый для кроссинговера, произойдет между ними, и два маркера в новой хромосоме, принадлежащей новой гамете, окажутся отделенными друг от друга, т.е. их сцепление нарушится. Единицей сцепления генетических маркеров является морганида (единица Моргана, М), которая содержит 100 сантиморганид (сМ). 1 сМ соответствует физическому расстоянию на генетической карте между двумя маркерами, рекомбинация между которыми происходит с частотой 1%. Выраженная в парах оснований 1 сМ соответствует 1 млн п.о. (м.п.о.) ДНК.

Генетические карты сцепления правильно отражают порядок расположения генетических маркеров на хромосомах, однако полученные при этом значения расстояний между ними не соответствуют реальным физическим расстояниям. Обычно данный факт связывают с тем, что эффективность рекомбинации между хроматидами на отдельных участках хромосом может сильно различаться. В частности, она подавлена в гетерохроматиновых участках хромосом. С другой стороны, в хромосомах часто встречаются "горячие точки" рекомбинации. Использование частот рекомбинации для построения физических генетических карт без учета этих факторов будет приводить к искажениям (соответственно занижению или завышению) реальных расстояний между генетическими маркерами. Таким образом, генетические карты сцепления являются наименее точными из всех имеющихся типов генетических карт, и их можно рассматривать только в качестве первого приближения к реальным физическим картам. Тем не менее, на практике именно они и только они позволяют локализовать сложные генетические маркеры (например ассоциированные с симптомами заболевания) на первых этапах исследования и дают возможность их дальнейшего изучения. Необходимо помнить, что в отсутствие кроссинговера все гены, находящиеся на индивидуальной хромосоме, передавались бы от родителей потомству вместе, поскольку они физически сцеплены друг с другом. Поэтому индивидуальные хромосомы образуют группы сцепления генов, и одной из первых задач построения генетических карт сцепления является отнесение исследуемого гена или последовательности нуклеотидов к конкретной группе сцепления. В табл. II.4 перечислены современные методы, которые, по данным В.А. МакКьюзика, наиболее часто использовались для построения генетических карт сцепления до конца 1990 г.

Карта - это графическая схема, позволяющая вычислить, где вы располагаетесь и как добраться туда, куда вы хотите попасть. Карта генома, соответственно, - это графическая схема, которая помогает исследователям ориентироваться в геноме, искать в нем места, которые могут быть важны и интересны.

Карта генома может содержать различную информацию: расположение специфических генов или регуляторных сайтов, но она также содержит большие пробелы, потому что постоянно пересматривается в соответствии с новыми данными о геноме, которые получают ученые.

В простейшем виде карта генома представляет собой прямую линию, как и молекулы ДНК, которые составляют геном. По всей длине расположены различные ориентиры, помеченные буквами и цифрами, которые позволяют исследователям идентифицировать отдельные признаки.

Карта - не одно и то же, что и последовательность оснований генома. Расположение некоторых генов на карте можно вычислить без определения последовательности оснований. Фактически, карта помогает секвенировать геном, давая ключи к взаимному расположению специфических фрагментов ДНК в мозаике генома.

Кроме того, карта обеспечивает ценную информацию, которую не может предоставить секвенирование генома. Секвенс генома - это всего лишь последовательность из одних и тех же четырех букв в бесконечной отупляющей вариации. Даже ученый не сможет, взглянув на последовательность оснований ДНК, мгновенно вычислить ее функцию. Вставив последовательность оснований на правильное место карты, вы получаете ключ к разгадке функции этой последовательности, если только она существует (рис. 6.2).

Вот один из способов использования учеными генетической карты. Предположите, что они хотят выяснить расположение определенного гена, вызывающего заболевание. Сначала обследуют несколько семей, страдающих этим заболеванием, чтобы узнать, с какими генетическими признаками связана болезнь. Гены любых признаков, имеющих тенденцию наследоваться вместе с предрасположенностью к болезни, с большой вероятностью могут быть локализованы на одной хромосоме рядом с генами, вызывающими болезнь. Они могут служить маркерами для искомого гена болезни.

Определив несколько маркеров с известным расположением па хромосоме, ученые могут с большой точностью, до нескольких миллионов пар оснований, установить расположение гена, вызывающего болезнь. Затем они могут сфокусировать усилия на части генома, несущей указанный ген, и искать ген, который имеет различную последовательность оснований у здоровых и больных люден, или ген, функции которого могут быть связаны с болезнью.

Именно так были идентифицированы гены, связанные с фиброзом мочевого пузыря и болезнью Гантингтона. Однако этот путь долог и трудоемок, поэтому целью генетиков остается разработка более детальных карт геномов. Использование таких карт позволит исследователям с точностью находить в геноме последовательности, которые им нужны.

Существует два типа генетических карт: карты генетического сцепления и физические карты.

Карты генетического сцепления показывают порядок расположения генов на хромосоме и относительные расстояния между ними. Это карты, аналогичные карте А.Х. Стюртеванта, которая описана в главе 4.

Карта Стюртеванта была построена на генетических признаках, физически видимых у плодовых мушек, с которыми он работал. Сегодня гораздо более сложные карты сцепления генов строятся на определении наследования специфических последовательностей ДНК.

Физические карты показывают количество оснований ДНК между двумя генетическими метками. Они основаны на сайтах (точках), помеченных определенными последовательностями оснований (СТС). СТС - это последовательность в ДНК, которая находится в единственной точке генома. Ее протяженность составляет несколько сот оснований. Она может быть частью гена, но это не обязательно.

Поскольку СТС встречается только в одном месте генома, то как только она попадается во фрагменте ДНК при секвенировании, вы можете определить расположение фрагмента в геноме.

Новые геномные карты совмещают черты обоих типов карт. Карты, которые включают последовательности и расположение всех генов организма, построены для более 150 организмов. Однако большинство из них - вирусы с очень маленькими геномами, что указывает на сложности, с которыми сталкиваются «картографы» геномных карт.

Loading...Loading...